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Abstract: Brain complexity analysis using functional near-infrared spectroscopy (fNIRS) has
attracted attention as a biomarker for evaluating brain development and degeneration processes.
However, most methods have focused on the temporal scale without capturing the spatial
complexity. In this study, we propose a spatial time-delay entropy (STDE) method as the spatial
complexity measure based on the time-delay measure between two oxy-hemoglobin (∆[HbO])
or two deoxy-hemoglobin (∆[Hb]) oscillations within the 0.01-0.1 Hz frequency band. To do
this, we analyze fNIRS signals recorded from infants in their sleeping state, children, adults, and
healthy seniors in their resting states. We also evaluate the effects of various noise to STDE
calculations and STDE’s performance in distinguishing various developmental age groups. Lastly,
we compare the results with the normalized global spatial complexity (NGSC) and sample entropy
(SampEn) measures. Among these measures, STDEHbO (STDE based on ∆[HbO] oscillations)
performs best. The STDE value increases with age throughout childhood (p< 0.001), and then
decreases in adults and healthy seniors in the 0.01-0.1 Hz frequency band. This trajectory
correlates with cerebrovascular development and degeneration. These findings demonstrate that
STDE can be used as a new tool for tracking cerebrovascular development and degeneration
across a lifespan based on the fNIRS resting-state measurements.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Understanding the functional and physiological changes in the human brain across a lifespan
is an important aim in neuroscience. Brain measurements (i.e., biomarkers) that accurately
describe the brain trajectory throughout the lifespan could promote holistic views of the brain,
brain developments, and many brain diseases [1], especially in the early and late stages of life.
Having such trajectory measures would be like obtaining a “growth chart” for the brain. By
comparing with charts, we can assess the maturity of an infant brain, as well as the degenerative
stage of an elderly brain. Moreover, we might be able to predict the progress of certain brain
diseases based on the assessment of individual trajectories. It has been suggested that the
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infant brain is not a miniature version of the adult brain, but a continuously self-organizing
system [2]. Short-range and long-range connectivity among multiple regions forms functional
networks in this self-organizing system. For instance, the autism spectrum disorder (ASD) is a
developmental brain disease in children. Establishing typical and atypical trajectories of brain
development could improve our understanding and treatment of ASD [3]. The same is true for
mild cognitive impairment and Alzheimer’s disease in older adults [4]. In short, a lifespan study
has important implications for disease investigation because it provides a baseline for evaluating
brain impairment in age-related neuropsychiatric disorders [1].

Identifying a proper imaging modality to track functional and physiological changes in the
human brain across a lifespan is a major challenge. Many neuroimaging tools have been used
to investigate brain development and degeneration, such as functional magnetic resonance
imaging (fMRI), positron emission tomography (PET), and electroencephalography (EEG) [5–7].
However, fMRI and PET are costly and ill-suited for bedside or portable measurement, and
EEG is sensitive to motion artifacts and has low spatial resolution. Also, due to the spatial
confinement, fMRI and PET are not suitable for functional brain imaging studies on children
(especially infants), the elderly, or people with claustrophobia [8].

In recent years, functional near-infrared spectroscopy (fNIRS), as a non-invasive hemodynamic-
based neuroimaging technique, has been extensively employed to investigate brain function, brain
development, and brain disease. Its advantages over fMRI and PET include good portability,
higher temporal resolution, and lower sensitivity to motion artifacts [9,10]. Additionally, its
spatial resolution is superior to that of EEG. fNIRS measures relative changes in concentrations of
oxy-hemoglobin (∆[HbO]) and deoxy-hemoglobin (∆[Hb]) secondary to neuronal activity. Since
the fNIRS has less restriction on subjects and higher motion-tolerance, it is an ideal functional
brain imaging tool for studying infants, children, and the elderly, in daily settings [11,12].

Another challenge is identifying effective biomarkers that reflect the trajectory [13]. An
important measure of the brain is complexity, which is broadly thought to be represented by the
differentiation or diversity of the neural activity [14]. Several methods have been proposed to
quantify brain complexity, mostly in the time-domain. These include permutation entropy [15]
and multiscale entropy [4]. In the spatial domain, Scharthner et al. have [16] proposed amplitude
coalition entropy and synchrony coalition entropy to quantify spatiotemporal variability in neural
activity. Additionally, Puglia et al. [17] used the Lempel-Ziv algorithm to measure the spatial
complexity of EEG during general anesthesia. They found that spatiotemporal Lempel-Ziv
complexity increased with age at the baseline state in the 8 to 16 years age group. These intriguing
findings demonstrate the importance and potential of spatial complexity in understanding the
brain. However, all of these studies were based on EEG measurement. Given that fNIRS is
still a novel modality in neuroscience, few groups have applied spatial complexity in fNIRS
studies. However, fNIRS has much better spatial resolution (than EEG), and is sensitive to
a different signal (i.e., blood signal). Thus, it would be useful to develop spatial complexity
methods for fNIRS studies. To our knowledge, only one method derived from fNIRS signals,
namely normalized global spatial complexity (NGSC), has been proposed and used to investigate
ASD [18]. This led to the discovery that an ASD group’s NGSC value is significantly higher
than that of a group with typical development. To further explicate the importance of spatial
complexity, and to extend its application, in this study, we developed another promising spatial
complexity method for fNIRS studies, and compare it to the NGSC method.

The time dependence between neural signals of spatially different brain regions is an important
way to quantify their functional connectivity [19]. In fNIRS and fMRI studies, a time delay
measure for low-frequency hemodynamic oscillations was employed to investigate the propagation
of the cerebral blood flow (CBF) [20,21]. In the present study, we propose spatial time-delay
entropy (STDE) to analyze the varying complexity of hemodynamic oscillations during brain
development and degeneration. Traditional methods to assess the time delay have been based
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on Pearson’s correlation coefficient—a time-averaged metric which cannot characterize brain
signals’ dynamic characteristics. In our study, we employ cross-power spectral density (CPSD)
to calculate the cross-spectrum phase of two time series in a limited frequency band. The time
delay map is achieved by calculating the phase lag at the peak coherence frequency. In order to
investigate the variability of complexity throughout a lifespan, we analyze the sleeping or resting
state fNIRS signals at the following age groups: early preterm, term, 3-4 months old, children
(6-11 years old), adults and healthy seniors. We also calculated the NGSC for comparison. We
hypothesized that the spatial complexity increased with brain development, and decreased with
brain degeneration [4,22].

This paper is organized as follows. Section 2 describes the participants’ information and
data recording, fNIRS preprocessing, spatial and temporal complexity measurements, and the
statistical methods employed. In Section 3, we analyze the noise influence on STDE and the
spatial complexity changes across age groups, and compare them with the NGSC and sample
entropy (SampEn) measures. Finally, Section 4 is the discussion and conclusion.

2. Material and methods

2.1. Participants

We enrolled 162 healthy participants, ranging in age from infancy to healthy seniors. The fNIRS
data were collected from two sites [23] and are described as follows.

1) The infant fNIRS dataset
We collected three age groups’ infant fNIRS data from Keio University, Tokyo, Japan: (1) 38

early preterm infants (21 boys and 17 girls, gestational age (GA) > 22 weeks); (2) 23 term infants
(13 boys and 10 girls, GA ≥37 weeks); and (3) 35 3-4-month-olds infants (18 boys and 17 girls,
GA >36 weeks). All subjects’ parent(s) signed an informed consent from the Keio University
Hospital ethics committee before the measurements (No. 20090189). The experiments were
conducted in a dimly lit room while the neonates and infants were sleeping (thus, not resting
state). The sleeping state was judged by the frequency of their motor activity and rapid eye
movement. We employed an Apgar score and Enjoji’s developmental test to evaluate the health
states of both neonates (early preterm and term) and 3-4-month-old infants. The results of the
tests showed that the condition and development of both neonates and infants were within the
normal range. Detailed information on all subjects is presented in Table 1.

Table 1. Demographic characteristics of the subjects

characteristics Early preterm Term 3-4 months

total(boy/girl) 38(21/17) 23(13/10) 35(18/17)

PMA(wk) 37.9(34-45.1) 39.0(37.4-41.5) 57.1(51.8-61.7)

GA(mean(min-max))(wk) 29.7(22.4-33.8) 38.2(37-41) 39.4(36.2-41.5)

PNA(day) 56.62(6-137) 4.2(3-7) 120.85(97-146)

Birth weight (mean(min-max)) (g) 1282.7(463-1887) 2851.8(2300-3936) 2937.5(2420-3562)

Characteristics Children Adults Healthy Seniors

Total(male/female) 21(10/11) 18(12/6) 27(15/12)

Age(mean(min-max)) (years) 8.1(6-11) 23.2(19-27) 63.3(58-77)

BMI(mean(min-max)) 17.0(16-18) 21.3(19-24) 20.9(18.5-23)

We used an ETG-4000 NIRS system (Hitachi Medical Corporation) to measure the hemo-
dynamic oscillations of ∆[HbO] and ∆[Hb] (millimolar millimeter). The layouts of the fNIRS
probes used on the early preterm and term neonates are presented in Fig. S1(a)-(c). A set of a
22-channel array (3 sources and 5 detectors) covers the frontal area, and two 12-channel arrays (3
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sources and 3 detectors) cover the left and right temporal areas. On the brain model, the X’s and
the O’s are the positions of the light-emitting sources and the detectors. The exact channel arrays
are shown in Fig. S1(d), where the red dots are the sources and the blue dots are the detectors.
The channels are located between sources and detectors. The layouts of the fNIRS probes used
on the 3-4-month-old infants are shown in Fig. S1(e)-(g). The two sets have 44 source-detector
channels with 3 sources and 5 detectors arrays to cover the frontal, left and right temporal regions.
The locations corresponding to these channels are shown in Fig. S1(h). In all infants’ fNIRS
recordings, the distance between the source and the detector was approximately 2 cm.

The fNIRS system’s sampling rate is 10 Hz and the near-infrared lights’ wavelengths are 695
and 830 nm. We used the NIRS-SPM toolbox (resources were obtained from www.nitrc.org) to
convert the detected light intensity information into ∆[Hb] and ∆[HbO] [24]. The differential
path-length factor (DPF) was set as 6.1718 and 5.5374 for the two wavelengths (695 and 830 nm).

2) The children, adults, and the healthy seniors’ fNIRS dataset
We collected the fNIRS data from children to healthy seniors from Beijing Normal University,

Beijing, China. There were three age groups: (1) children (n= 21, aged 6-11, 10 males, 11
females), (2) adults (n= 18, aged 19-27, 12 males, 6 females), and (3) healthy seniors (n= 27, aged
58-77, 15 males, 12 females). All subjects were right-handed based on the Edinburgh Handedness
Inventory assessment. The subjects (or their parents for minors) signed an informed consent
form prior to the experiment. The Institutional Review Board at Beijing Normal University,
China approved all the experiments. Previous studies have reported detailed information on
children [25] and adults [26]. All participants were healthy with normal weight. To exclude any
participants with cognitive impairment, we conducted the standard neuropsychological tests—the
Chinese version of the Mini-Mental State Examination (MMSE), the Beijing version of the
Montreal Cognitive Assessment (MoCA), and for the healthy seniors we also conducted the
Clinical Dementia Rating (CDR).

The detailed fNIRS experimental setup has been described by Cai et al. [27] . In our study, we
used the CW6 fNIRS system (TechEn Inc., MA, U.S.A) to record the hemodynamic response in
resting state. Then, we placed 12 light sources and 24 detectors constituting 46 measurement
channels on a stretchable cap covering most of the head. The source-detector distance was 3.2
cm with wavelengths of 690 nm and 830 nm, respectively. The system’s sampling rate was 50
Hz. The layouts are shown in Fig. S1(i)-(k) and the corresponding locations of those channels
are shown in Fig. S1(l). They cover the cortical frontal, parietal, temporal, and occipital regions.
The experiment took around 11 minutes and was conducted in a “resting state”, defined as eyes
closed, relaxed, and awake state [25].

We used the Homer2 toolbox to convert the light intensity into ∆[Hb] and ∆[HbO] (resources
were obtained from https://www.nitrc.org/projects/homer2/) [9], and Gratzer’s extinction factors
for the calculation, with DPF set to 6.0 for all participants [6].

2.2. fNIRS signal preprocessing

Signal quality is crucial to data analysis. As in our previous study [23], we identified any fNIRS
signal that lacks a cardiac component (within a range of 1-2 Hz) in the spectrum as the noise
signal, and removed them from further analysis. Then, we eliminated the motion artifact using the
kurtosis-based Wavelet Filtering method [28]. After that, we downsampled the fNIRS signals to
2 Hz for further analysis. Finally, we extracted the fNIRS signals (i.e. ∆[HbO] and ∆[Hb]) in the
0.01-0.05 Hz, 0.05-0.1 Hz, and 0.01-0.1 Hz frequency bands with a zero-phase digital band-pass
filter (MATLAB function filtfilt.m, butterworth order= 3) for spatial complexity analysis.

http://www.nitrc.org
https://www.nitrc.org/projects/homer2/
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2.3. Spatial time delay entropy

Hemodynamic oscillation time dependence between regions reflects the hemodynamics changes
in various stages [20,21]. In this study, we proposed a spatial entropy—spatial time delay
entropy—to measure the overall hemodynamics variation with the brain development.

The STDE algorithm can be described as follows: First, consider two ∆[HbO] time series (see
Fig. 1(a)) or two ∆[Hb] time series with 120 s epochs, and filter the data to a given frequency
band (see Fig. 1(b)). In this study, we analyzed the fNIRS signals in the 0.01-0.1 Hz frequency
band. Then, we used the CPSD method to calculate the cross-spectrum phase of two time series.
The magnitude of the CPSD represents the coherence between two signals, as shown in Fig. 1(c).
The phase of the cross spectrum can be achieved by the angle function (MATLAB: angle.m).
The frequency point with the highest coherence value corresponds to the phase lag with two
signals. Therefore, the time delay of two time series was calculated by timedelay = θmax

2πfmax
, where

fmax is the frequency point with the highest CPSD value of the two signals. The θmax is the
corresponding phase under the frequency fmax . The time delay change corresponding to the
frequency is presented in Fig. 1(d). Next, we calculated all the time delay values between all
paired-two fNIRS channels. In this study, there were 46 source-detector channels, and in theory,
we could have obtained 46*45/2= 1,035 absolute values for each epoch, as shown in Fig. 1(e).

Fig. 1. The STDE calculation process based on two-channel ∆[HbO] signals. (a) The raw
∆[HbO] signals recorded from an early-preterm participant. (b) Filtered ∆[HbO] signals
in the 0.01-0.1 Hz frequency band. (c) The CPSD of two ∆[HbO] signals. The red circle
indicates the peak frequency. (d) Time delay values corresponding to the frequency changes.
The time delay corresponding to the peak frequency is marked with two orthogonal red lines.
(e) Time delay matrix of all paired-channels in an early-preterm participant. (f) Time delay
histogram distributed in [0,20].

Then, we calculated a histogram of all the time delay values with one subject, with the number
of bins set at 20 (see Fig. 1(f)). The entropy of the time delay distribution can be calculated by

E = −
b∑︁

j=1
pj log pj, where pj is the proportion of bins and b is the number of the bins. We termed

the normalized entropy STDE, and calculated it by ESTDE = E/log 1
N , where N is the number of

bins.
To calculate the time delay and entropy, it is important to determine a maximum time delay

threshold for all age groups. It is well-known that a correlation coefficient greater than 0.3 is
meaningful for investigating the functional connection in fNIRS and fMRI studies. Therefore,
we selected paired channels with correlation coefficients exceeding 0.3 for calculation [29].
Approximate normal distributions for all time delay values with cross coefficients greater than
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0.3 for early preterm, term, 3-4 months, children, adults and healthy seniors are presented in
Fig. 2(a)-(f). The fig’ x-axes are the time delay values after power conversion by the boxcox
function (Matlab: boxcox.m). Based on these distributions, we used a significance threshold of
p< 0.05 for each measure to avoid spurious results. The significant thresholds for early preterm,
term, 3-4 months, children, adults and healthy seniors were 2.27, 2.24, 2.08, 2.18, 2.01 and 2.00,
respectively. The corresponding time delays for these age groups were 11.36 s, 13.91 s, 14.65 s,
18.10 s, 12.07 s and 9.38 s. For the convenience of calculation, we analyzed only time delay
values less than 20 s. All time delay values with cross coefficients greater than 0.3 for early
preterm, term, 3-4 months, children, adults and healthy seniors are presented in Fig. S2(a)-(f).

Fig. 2. Approximate normal distribution plot after power conversion of all time delay values
for early preterm, term, 3-4 months, children, adults and healthy seniors.

2.4. Normalized global spatial complexity

Jia et al. proposed the NGSC method [18] in which they employed the Shannon entropy of a
feature spectrum of its covariance matrix to quantify spatial complexity by using fNIRS signals.
The NGSC algorithm is described below:

Firstly, we conducted the principal component analysis (PCA) on the ∆[HbO] or ∆[Hb] signals,
which yielded m principal components and a spectrum of eigenvalues, where m is the number of
channels across the scalp. Then, to assess the relative contribution of each principal component’s
relative contribution to the total variance, we normalized the eigenvalues of principal components.
The normalized eigenvalue of the i-th principal component was calculated as

λ′i =
λi

m∑︁
i=1
λi

(1)

where m was the number of principal components or scalp channels, and λi and λ′i represented the
eigenvalue and the normalized eigenvalue of the i-th principal component, respectively. Lastly,
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we computed the NGSC using the following equation:

NGSC = −

m∑︁
i=1
λ′i log λ′i

log m
(2)

The lowest NGSC value was 0, meaning that the hemodynamic signals of all fNIRS channels
consisted of exactly one principal component or spatial mode. This indicates a minimum brain
spatial complexity. Meanwhile, the highest NGSC value was 1, indicating that the total data
variance was uniformly distributed across all m principal components, i.e., maximum brain
spatial complexity.

2.5. Sample entropy

Richman et al. have proposed SampEn [30], an important measure for describing the unpre-
dictability and randomness of a non-linear time series. The detailed calculation is described
below:

Firstly, we consider a signal with N data points from a time series {x(n)} = x(1), x(2), . . . , x(N)

to define SampEn. We set the tolerance coefficient (r) and the embedding dimension (m)
to construct the template vector Xm and define the generalized formula of Xm as: Xm(k) =
{x(k), x(k + 1), . . . , x(k + 1 − m)}.

Then, we compute how many distances were less than R = (R = r × SD) (standard deviation of
the original data)). The distance function is defined as:

d[Xm(i), Xm(j)] = max[|x(i + k) − x(j + k)|] (k ∈ [0, m − 1], i ≠ j) (3)

The total number of templates matches under the embedding dimension m is:

Bm(r) =
1

N − m

N−m∑︂
i=1

Bi(r) (4)

where the Bi(r) is ith total number. Similar to the computation of Bm(r), we calculate the Bm+1(r)
when the embedding dimension is m+1.

Finally, we define SampEn as:

SampEn(m, r, N) = − ln
[︃
Bm+1(r)
Bm(r)

]︃
(5)

In this study, we set the parameters as m= 2 and r= 0.2SD, based on a previous study [31].
SampEn measures the complexity of one time series. For each channel, we can obtain a SampEn
value. Thus, we used the mean SampEn value for all channels to represent the time domain
complexity, for comparison.

2.6. Time delay calculations based on simulated signals

Time delay can be calculated with the cross-correlation method. However, in this study, we used
CPSD to achieve the time delay value. To evaluate performance in the time delay calculation
of CPSD methods, we used two simulated signals by combining two sinusoid waves, at 0.2 Hz
and 0.5 Hz, under a sampling rate of 10 Hz (see Fig. 3(a)). Compared to signal y2, the signal
y1 phase lagged π

2 at 0.2 Hz and phase lead π
3 at 0.5 Hz. The data length of the two simulated

signals was 300 s. The formulas are:

y1 = 3 ∗ sin(2π∗0.2t) + 1.5 ∗ sin(2π∗0.5t) (6)

y2 = 2 ∗ sin(2π∗0.2t +
π

2
) + 1 ∗ sin(2π∗0.5t -

π

3
) (7)
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Fig. 3. Comparison of time delay calculation methods. (a) simulated time-series of y1 and
y2. (b) CPSD of two simulated time-series. (c) The phase of two simulated time-series
corresponds with the frequency changes. The red circles and dashed lines+ indicate the
peak frequency and corresponding phase. (d) Time delay values corresponding with the
frequency changes. The time delay corresponding to the peak frequency is marked with two
orthogonal red lines and a red circle.

The signals of y1 and y2 have CPSD peaks at 0.2 Hz and 0.5 Hz, respectively (see Fig. 3(b)).
The CPSD peak at 0.2 Hz is greater than the peak at 0.5 Hz.

There are two steps to calculating the cross-spectrum phase. In the first step, we used the
MATLAB function cpsd.m to derive a vector of frequencies and corresponding cross power
spectral density which is a complex value. In the second step, we used the MATLAB function
angle.m to derive the cross-spectrum phase. We can achieve the exact phase lag in a specific
frequency based on this procedure. The Φ0.2 and Φ0.5 are the cross-spectrum phase at 0.2Hz
and 0.5Hz, respectively. Based on above calculation, the cross spectrum phases of y1 and y2 are
π
2 at 0.2 Hz, and − π

3 at 0.5 Hz, respectively. This means that compared to time-series y2, the
time-series y1 phase lagged π

2 at 0.2 Hz, and phase advanced π
3 at 0.5 Hz (see Fig. 3(c)).

The time delay can be calculated by timedelay = Φf
2πf , where f is the frequency point and Φf is

the corresponding cross-spectrum phase at this frequency point. Therefore, the time delay values
of y1 and y2 are 1.25 s at 0.2 Hz and -0.33 s at 0.5 Hz (see Fig. 3(d)).

We regarded the time delay determined by the dominant frequency as the time delay between
the two fNIRS signals. Therefore, we used a time delay corresponding to the maximum CPSD as
the delay value between the two signals.

Further, the CPSD (calculating the time delay) was performed in a noisy environment. As
shown in Fig. S3, we added random noise of varying intensities (from 1 dB to 25 dB) to
the simulated signals. The results showed that the time delay and phase of the corresponding
frequencies had not changed significantly. In our simulation, the only deviation of the time delay
was observed at 0.2 Hz, and only by 1.6% (from 1.25 s to 1.27 s) (see Fig. S3). Therefore, the
CPSD is resistant to the noise introduced in calculating the time delay.

2.7. Impacts of random noise on STDE and NGSC calculations

In order to investigate the noise impact on the STDE and NGSC calculation measures, we added
random noise at varying intensities into the raw optical density signals of varying numbers of
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channels. Then, we used the NIRScout 816 imaging system (NIRx Medical Technologies LLC)
for data collection. Based on our previous study [23], we knew that the raw optical density
signals had distinct heart rate information, and therefore we assumed them to be “clean” signals.
For convenience, we selected 21 channels’ fNIRS signals from normal men which had at least 10
minutes of resting-state data for simulation. We selected the noise signal by using only those
fNIRS signals which had been recorded in a dark environment. Next, we placed the detectors in
a dark environment away from the subject so that we could get a pure noise signal containing no
hemoglobin signals. Then, we added the noise signal into the raw optical density signals with the
noise coefficient from 0 to 1. To obtain the changes in STDE and NGSC at varying noise levels,
we set the step to 0.001 within a range of 0 to 1. Then, we calculated the signal-to-noise ratio
(SNR) for various levels of noise by dividing the raw optical density energy by the noise energy.
Because STDE and NGSC are spatial complexity measurements, the number of contaminated
channels is also an important influence. We set the step to 1 within a range of 0 to 21 (signal
channels), and added noise signals of various levels (the SNR step to 1 within the range 0 to
40 dB) for simulation. Finally, we calculated STDE and NGSC under various SNR levels and
numbers of contaminated channels.

2.8. Statistical analysis

The aim of this study was to (1) evaluate STDE’s performance in tracking brain development
and degeneration, and (2) compare it with measures of NGSC. We used a box plot to show
the sample distributions in participant-based statistical analysis. For each of these indices, we
used a Lilliefors test to determine whether the values had normal distributions. Then, we used
a Kruskal-Wallis test and a multiple comparison test to estimate the statistical significance of
the differences between the indices of different age groups. We performed a post-hoc test with
Bonferroni correction to adjust the p-values. Finally, any adjusted p-values less than 0.05 were
considered as indicating a statistically significant difference. In all figures and tables, we used
‘*’, ‘**’, and ‘***’ to represent p< 0.05, p< 0.01, and p< 0.001, respectively.

3. Results

3.1. Effects of STDE and NGSC with the influence of noise

In this study, we analyzed noise’s influence on spatial complexity measures. Because the
calculation incorporated all fNIRS channels which cover the brain, we varied the number of
contaminated channels, as well as the noise intensity in the simulation. Figure 4 shows the
effects of STDE and NGSC under the influence of noise at varying intensities and with different
numbers of contaminated channels. Figure 4(a) presents the raw optical density signals (785
nm and 830 nm) derived from the fNIRS system, and Fig. 4(e) and (i) are the optical density
signals contaminated by random noise with different intensities. The relevant power spectra of
raw optical density and optical density signal with noise are shown in Fig. 4 (b), (f) and (j),
respectively. We converted the optical data into hemodynamic oscillations of ∆[Hb] and ∆[HbO]
with the Homer2 toolbox which uses Gratzer’s extinction factor [32]. The corresponding ∆[HbO]
and ∆[Hb] signals are shown in Fig. 4(c), (g) and (k). The filtered ∆[HbO] and ∆[Hb] signals in
the 0.01-0.1 Hz frequency band are shown in Fig. 4(d), (h) and (l). As shown in figure 4, the
∆[HbO] and ∆[Hb] waveforms were distorted with the influence of noise.

Next, we evaluated noise’s influence on the indices (i.e., STDE and NGSC) by varying amounts
of contaminated fNIRS channels (from 0 to 21, step 1) and varying noise levels (SNR from 0 to
40 dB, step 1 dB). If the indices change more than 10% as a result of increasing noise levels and
increasing number of contaminated channels, we consider the indices are “unreliable”. Because
STDE and NGSC can be calculated based on the hemodynamic oscillations of either ∆[HbO] or
∆[Hb], we analyzed the STDE and NGSC changes in both signals. We termed the STDE based
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Fig. 4. The effects of the STDE and NGSC for ∆[Hb] and ∆[HbO] with the influence
of noise. (a, e, i) Light intensity signals for raw, SNR= 25 dB, and SNR= 16 dB. (b, f,
j) Spectrum power from the 785 nm light intensity from the left Fig, respectively. (c, g,
k) Generated ∆[Hb] and ∆[HbO] signals calculated by the modified Beer-Lambert law
from the raw signals in (a, e, i), respectively. (d, h and l) Filtered ∆[Hb] and ∆[HbO] in
the 0.01-0.1 Hz frequency band derived from the left Fig. (m) STDEHbO changes with
SNR increase and contaminated noise channel increase. (n) STDEHb changes with SNR
increase and contaminated noise channel increase. (o) NGSCHbO changes with SNR increase
and contaminated noise channel increase. (p) NGSCHb changes with SNR increase and
contaminated noise channel increase.

on ∆[HbO] and ∆[Hb] as STDEHbO and STDEHb, respectively; and the NGSC based on ∆[HbO]
and ∆[Hb] as NGSCHbO and NGSCHb, respectively.

Figure 4(m) and (n) present the STDEHbO and STDEHb with varying noise levels and number
of contaminated fNIRS channels, respectively. As shown in Fig. 4(m), the STDEHbO is relatively
stable when SNR is greater than 25dB (a higher SNR value indicates superior signal quality)
and when there are less than 10 contaminated channels. The STDEHbO abruptly increased (more
than 10% relative to ‘baseline’) when there were more than 10 contaminated channels and SNR
was less than 25 dB. The STDEHbO became unreliable when the SNR was less than 25 dB and
noise-contaminated channels exceeded 47.6% of the total channel. Compared with STDEHbO,
the STDEHb decreased when there were more than 5 contaminated channels and SNR was less
than 15 dB, indicating that the STDEHb was more prone to noise.

Figures 4(o) and 4(p) present changes in NGSC based on ∆[HbO] or ∆[Hb] with varying noise
levels and numbers of contaminated channels. As shown, the changes in NGSCHbO indices are
similar to those of NGSCHb, which dropped when there were more than 10 contaminated channels
and SNR was less than 25 dB. However, compared with the STDEHbO, the NGSCHbo and NGSCHb
values decreased with the increase in contaminated channels and the decrease in SNR. We used
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the offset of the metrics to compare the performances of the STDE and NGSC under noisy
conditions (i.e., anti-noise performance). Under the same noise levels, the larger index change
(i.e., offset) means that the index is more prone to noise (i.e., poor “anti-noise performance”). As
a result, the biggest offsets of STDEHbO, STDEHb, NGSCHbo and NGSCHb were 44.31%, 56.87%,
90.08%, and 96.14%, respectively (with SNR= 0∼40 dB; contaminated channel number= 0∼21).
This indicates that among these four spatial complexity measures, STDEHbO performs the best at
noise resistance. Also, the simulations showed that STDEHbO, STDEHb, NGSCHb and NGSCHb
are reliable when the SNR exceeds 25 dB and the noise-contaminated channels are less than
47.6% of the total channel.

3.2. Spatial complexity changes paralleling brain development and degeneration

In this study, we proposed a new measurement to quantify brain development and degeneration
by quantifying the spatial complexity of hemodynamic oscillations. In Fig. 5, we calculated the
time delay matrixes of six participants from six age groups—early preterm, term, 3-4 months
old, children, adults, and healthy seniors. We also analyzed the ∆[HbO] in the 0.01-0.1 Hz
frequency band. In these time delay matrixes, the red dots indicate longer time delay between two
hemodynamics oscillations, while the blue dots indicate a short time delay. The histograms are
the distribution of the time delay values in the upper panel. As shown, the time delay distribution
widens with age within the first 3-4 months of life. This indicates that the time delay between all
channels diversifies with age in the infant group. Compared with adults, the distribution of the
time delay values narrows in healthy seniors. This indicates that the variation in the time-delay
dependency between all channels decreases in healthy seniors. In addition to the ∆[HbO], we
also analyzed the STDE based on ∆[Hb]. Fig. S4 shows the time delay matrixes and time delay
value distributions for ∆[Hb] in the 0.01-0.1 Hz frequency band in different age groups. As
shown, the distribution for the infant of 3-4 months old widens more than those of early-preterm
and term. However, we observe no difference between the healthy seniors and the adults.

To further investigate the complexity change with brain development and degeneration at the
group level, we statistically analyzed the STDE, NGSC and SampEn measurements in each age
group. We calculated the significances of the spatial entropy indices among various age groups
with the Kruskal-Wallis test and multiple comparison tests. Figure 6(a) and (b) show boxplots
for STDEHbO, STDEHb and SampEn in each age group in the 0.01-0.1 Hz frequency band. As
shown, the STDEHbO in the 3-4 months old age group exceeded those of the early-preterm and
term age groups. Among all age groups, children have the highest values. Compared with the
children and adults, the healthy seniors’ values decreased. The STDEHb in the 3–4-month-old
age group exceeded that of the early-preterm and term age groups (see Fig. 6(b) and Table 2).
However, there were no significant differences between the age groups of children, adults, and
healthy seniors. The box plots for STDEHbO and STDEHb in the 0.01-0.05 Hz and 0.05-0.1 Hz
frequency bands are shown in Fig. S5(a)-(b) and S6(a)-(b), respectively. As shown, the STDEHbO
and STDEHb can distinguish the age groups of early-preterm, term, and 3–4-month-old infants in
0.01-0.05 Hz. Of note, the STDEHbO has superior performance in distinguishing the children,
adults, and healthy senior age groups. The mean±SD of STDEHbO and STDEHb in all three
frequency bands are presented in Table 2, S1 and S2. All statistically significant difference values
are presented in Table S3-S8. All these findings were statistically significant at a level of p< 0.05,
or lower.

For the NGSC measure, the NGSCHbO increased with age until adulthood and then decreased,
as shown in Fig. 6(c) and 6(d). However, there were no significant differences between the
term and 3-4 months infant age groups (p> 0.05). The NGSCHb outperformed the NGSCHbO at
distinguishing the infant age groups (early preterm, term, and 3-4 months old). The NGSCHbO
and NGSCHb indices increased from children to adults, and then decreased in the healthy seniors.
These trends are different from the STDE, which has the highest value in children. The statistical
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Fig. 5. Time delay map and time delay histogram for ∆[HbO] for various subjects across
age groups in the 0.01-0.1 Hz frequency band. (a)-(f) are the time delay map and time delay
histogram for the subjects with age of PNA= 17, 5 and 132 days. The color of the dots in the
time delay map represents the time delay value; the red represent a time delay approach of
20, and the blue represent a time delay approach of 0. The histograms show the time delay
distributed in [0,20]. (g)-(l) are the time delay map and time delay histogram for subjects
aged 6, 27 and 70 years.

analysis of the NGSC indices in the 0.01-0.05 Hz and 0.05-0.1 Hz frequency bands are presented
in Fig. S5(c)-(d) and S6(c)-(d), respectively. NGSCHb has superior performance in distinguishing
the developmental states in infants (early-preterm, term, and 3-4 months old), as well as in
distinguishing the degeneration from adults to healthy seniors. The statistically significant
difference values are presented in Table S9-S14. The mean±SD of NGSCHbO and NGSCHb in
all three frequency bands are presented in Table 2, S1 and S2.

For the SampEn measure, the SampEnHbO and SampEnHb values in the early preterm age
group were higher (but not statistically significant) than those of the term and 3–4-month-old age
groups, as shown in Figs. 6(e) and 6(f). Also, there were no significant differences between the
early pre-term, term, and 3-4 month infant age groups (p> 0.05) for the SampEn measure. This
means that SampEn could not distinguish the developmental changes in infants. SampEnHbO in
0.01-0.1 Hz had the highest value in adults, compared to other groups (p< 0.01). SampEnHb
in 0.01-0.1 Hz also had the highest value in adults, higher than other groups (except children)
(p< 0.001). The statistical analysis of the SampEn indices in the 0.01-0.05 Hz and 0.05-0.1 Hz
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Fig. 6. Boxplots of STDE and NGSC for 0.01-0.1Hz. (a) is a boxplot of STDEHbO for
early-preterm, term, 3-4 month, children, adults and healthy seniors within 0.01-0.1Hz. (b)
is the boxplot for STDEHb for early-preterm, term, 3-4 month, children, adults and healthy
seniors within 0.01-0.1Hz. (c) is the boxplot for NGSCHbO for early-preterm, term, 3-4
month, children, adults and healthy seniors within 0.01-0.1Hz. (d) is the boxplot for NGSCHb
for early-preterm, term, 3-4 month, children, adults and healthy seniors within 0.01-0.1Hz.
(e) is the boxplot for SampEnHbO for early-preterm, term, 3-4 month, children, adults and
healthy seniors within 0.01-0.1Hz. (f) is the boxplot for SampEnHb for early-preterm, term,
3-4 month, children, adults and healthy seniors within 0.01-0.1Hz.

Table 2. STDE, NGSC and SampleEntropy range at 0.01-0.1Hz band (mean±SD)

Early preterm Term 3-4 Months Children Adults Healthy
Seniors

STDEHb 0.68±0.15 0.72±0.10 0.82±0.06 0.93±0.05 0.94±0.02 0.94±0.06

STDEHbO 0.73±0.10 0.76±0.08 0.81±0.06 0.90±0.08 0.87±0.08 0.73±0.10

NGSCHb 0.32±0.08 0.38±0.08 0.48±0.06 0.61±0.08 0.66±0.05 0.49±0.05

NGSCHbO 0.42±0.05 0.45±0.07 0.47±0.05 0.51±0.08 0.54±0.10 0.37±0.07

SampleEnHb 0.36±0.06 0.34±0.07 0.34±0.04 0.40±0.03 0.44±0.03 0.34±0.05

SampleEnHbO 0.36±0.05 0.35±0.05 0.36±0.04 0.39±0.03 0.43±0.04 0.39±0.05

frequency bands are presented in Figs. S5(e)-(f) and S6(e)-(f), respectively. The mean±SD of
SampEnHbO and SampEnHb in all three frequency bands are presented in Tables 2, S1 and S2.
The statistically significant differences are presented in Tables S15-S20.

4. Discussion

Tracking brain development and degeneration with brain functional imaging tools has been
a critical aim of neuroscience in recent years. Some fNIRS studies have explored functional
changes in the brain, however, over a short period [33,34]. In this study, we have assessed brain
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development over a long lifespan (neonates to healthy elderly people), and more importantly, we
validated that STDE, a new spatial complexity measurement, as an effective fNIRS biomarker,
can be applied to different age groups (without too much variation), and used to track brain
development and degeneration.

Our main findings are as follows. First, complexity is an important, but understudied parameter
for revealing the mystery of the brain [35]. The method we proposed (STDE) could be used to
investigate the spatial complexity of the hemodynamic oscillations, which has rarely been studied
(especially in fNIRS). Our study has not only explored the spatial complexity in fNIRS, but
has also produced the first complexity-based trajectory for healthy subjects over a long lifespan.
Second, we have verified STDE’s performance under various noise conditions, and have validated
its effectiveness in distinguishing brain states in various age groups. The STDEHbO had the best
noise resistance among four of the spatial complexity indices. Third, we have compared the
STDE with another spatial complexity measure (NGSC) and a time-domain entropy (SampEn).
We evaluated them based on their unique strengths in reflecting various aspects of brain growth.
The findings in this paper will pave the way for subsequent use of the methods/parameters as a
biomarker for brain development assessment.

4.1. STDE can track cerebral vascular changes during brain development and degen-
eration

Brain development and degeneration throughout the lifespan is a complex process entailing
physiological, neural, and functional network changes. The physiological changes include
development and degeneration in blood volume/flow/speed and oxygenation [36]. The neural
alternations include the changes in synaptogenesis in the cortex, the dendritic connections, and
the white-matter connectivity [37]. Meanwhile, development and degeneration of the brain
functional networks includes the changes in cortex connections [38], brain networks [2], and
functional complexities [39]. None of these structural or functional changes are linear with aging.

From the perspective of physiological development and degeneration in the brain, a previous
study [40] has suggested that brain development causes the following vascular changes in the
infant state: (1) increased cerebral capillary and venous blood flow; (2) increased cerebral blood
volume for the increased capillary density; and (3) increased mean arterial pressure limited by
cerebral auto-regulation. On the contrary, the physiological changes in the aging brain include
declining metabolic rates and cerebrovascular function, as well as neuron degeneration, and these
processes are interrelated [41]. It is also known that the aging brain may induce hypoperfusion
and blood-brain barrier dysfunction. Cerebrovascular aging entails (1) microvascular rarefaction,
(2) oxidative stress in inflammation, (3) arterial stiffness, (4) narrowing of the vascular lumen, and
(5) endothelial replicative senescence [41]. In short, the cerebrovascular system is intertwined
with the process of brain development, maturation, and aging.

Based on our previous research on fMRI and fNIRS, we found that time delays between the
low-frequency oscillations of fMRI/fNIRS signals are related to the propagation of the cerebral
blood [20,21]. The range of the time delays from the whole head represents the cerebral blood
transit time [20]. The STDE measures the diversity of hemodynamic spatial time-delay in the
cerebral cortex. Therefore, we used the STDE to quantify cerebrovascular-related development
and degeneration, including changes in cerebral blood flow, volume, and oxygenation. In our
study, the STDE values increased from preterm and term to 3-4 months old, and had the highest
values in children (6-11 years old) both for ∆[HbO] and ∆[Hb] in the fNIRS frequency band of
0.01-0.1 Hz. Then, they decreased in adults and healthy elderly people (see Figs. 6(a)-(b)).

Similar trajectories have been found in CBF from other imaging studies. For example, in a PET
[42] and a transcranial Doppler study (TSD) [43] on CBF from participants ranging from 10 days
to 16 years old and 3 to 18 years old, respectively, CBF was found to increase at an early age. It
then peaked around age 7 before starting to decrease, and stabilize at age 15 [43]. In another study
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[44], the researchers employed intracranial 4D flow MRI to analyze CBF in children (7 months -
17 years old) and adults (19-61 years old). They measured the peak velocities in several major
arteries of the brain and observed a similar phenomenon of age-related CBF fluctuations before
age 20. These observations demonstrate the close relationship between STDE and hemodynamic
parameters, such as CBF.

4.2. Relationship between STDE and NGSC

In this study, we compared the performance of NGSC’s spatial complexity in tracking the brain
development and degeneration with STDE. Although they are all spatial complexity measures,
the theoretical basis of the NGSC approach differs from that of STDE. The NGSC calculations
were based on PCA and normalized entropy, which is thought to estimate the global functional
connectivity between brain signals. While STDE measures the time-dependence relationship
between two hemodynamic oscillations and reflects the cerebrovascular change between two
regions [20,21].

Jia et al. [18] used NGSC to analyze differences in global functional connectivity levels
between children with ASD and age- and gender-matched children with normal development. It
has been suggested that the NGSC of neural signals changes inversely with global functional
connectivity (FC). They found that the NGSC was greater in ASD children than that in healthy
controls, which implied that the ASD children have weaker FC. Cai et al. investigated brain
functional development from early childhood (7-8 years old) to adulthood, based on resting-state
fNIRS signals [27]. They used graph theory to construct brain functional network analysis and
a metric of global efficiency. Their findings showed that young children had higher FC (i.e.,
low spatial complexity) than adults. In the present study, we found that NGSC intensified from
childhood to adulthood, which matches cognitive development and is consistent with the existing
studies. Therefore, NGSC is good at measuring changes in brain FC at the global level.

Compared with NGSC, we found that the trends in STDE indices from infancy to childhood
and adulthood are more similar to the development of cerebrovascular parameters (i.e., CBF)
than to that of FC.

For all calculations, we analyzed ∆[Hb] and ∆[HbO] in the 0.01-0.1 Hz frequency band. The
results are consistent with existing studies [30]. The origins of these blood-related low frequency
oscillations are still unclear. The sources of these oscillations include neural (resting state neural
activity) and vascular (fluctuations in blood oxygenation and flow arising from cardiac and blood
pressure changes, respiratory effects, etc.) components [45]. The results of our study suggest
that STDE and NGSC characterize the physiological and neural components, respectively, thus
indicating that there are both neuronal and physiological components in the low frequency signals
of ∆[Hb] and ∆[HbO].

In summary, this study supplies a tool for assessing development and aging, from infancy to
old age. STDE and NGSC quantify brain development from the perspective of spatial complexity,
which is more suitable for analyzing non-linear and non-stational brain oscillations. The spatial
complexity can characterize the brain development better than the time-domain complexity
measure (i.e., SampEn). Furthermore, these two approaches have potential value in evaluating
cerebrovascular deficits related to brain injuries (such as stroke and cerebral ischemia), as well
as developmental and degenerative brain diseases (such as ASD and Alzheimer’s disease), in a
‘resting-state’.

4.3. Other potential fNIRS biomarkers

In addition to the complexity measures, many theories have been employed to investigate the
functional changes in spatial-temporal scales [36] such as FC [46,47] and graph theory [22].
FC analysis is an important tool for investigating the coupling and cooperation between brain
regions during tasks or resting states [46,47]. Cortical regions are thought to be functionally
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connected when these regions activate simultaneously [48]. Several studies have also used the
FC to investigate cognitive decline [49], brain development [50] and degeneration [51]. The
human brain is a complex network with non-trivial global and local topological features [52].
Using graph-theory approaches, fNIRS-derived brain networks can quantify the functional and
topological characteristics of network organizations within the brain [53]. Graph-theory based
metrics have also been used to investigate brain growth trajectory [54,55]. These studies suggest
that graph-theory approaches are powerful tools for characterizing brain status. Since the FC and
graph theory are sensitive to the NIRS probe configurations and coverage, it was hard to calculate
them in this study. We hope to compare all of these parameters in future lifespan studies.

5. Limitations

This study has the following limitations. First, the fNIRS probe covers a smaller cortical region
in infants (preterm, term, 3-4 months) than in the other age groups. From the perspective of brain
development research, it is always valuable to investigate the whole brain [56]. However, due to
the limitations of the fNIRS device and the study population, whole-brain coverage might not be
possible. Based on our simulation and results, to obtain robust results, we suggest 1) keeping
at least 20 fNIRS channels, and 2) covering at least 50% of the cortical region. Second, we
collected the infants’ fNIRS data during sleep as in similar infant studies [57,58], while collecting
fNIRS data during resting states for other age groups. Therefore, the conclusions of this study
could only be drawn based on these two conditions. Third, the age gaps between children, adults,
and healthy elderly people were too wide; there were no participants in the age range from 1
to 6 years old. However, other studies have suggested that profound brain growth transpires
during this period [59,60]. Therefore, meta-analysis should be conducted with more datasets and
smaller age gaps in the future. Finally, all the fNIRS channels in this study are single-distance
channels. It has been documented that fNIRS is prone to “noise” from the superficial layer.
People use multi-distance optodes and independent component analysis to remove the superficial
noise [61]. The noise is more profound in adults than in infants (due to less superficial noise). In
many fNIRS studies (including ours), the number of fNIRS optodes is limited, thus restraining
the multi-distance measurements. Based on our results, a source-detector distance of 3 cm is
sufficient for measuring a reliable trajectory. In the future, it would be useful to conduct and
compare multi-distance and signal-distance STDE measurements.

6. Conclusion

In this study, we have presented a novel spatial complexity to assess brain development and
degeneration. In summary, the spatial complexity of brain near-infrared signals increases as the
brain develops and diminishes in old age. The STDE is sensitive to the vascular and metabolic
changes associated with brain development in different age groups. Meanwhile, the NGSC is
sensitive to the functional changes during brain development. This study has demonstrated that
STDE and NGSC derived from fNIRS are potential biomarkers for assessing brain development
across the lifespan.
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